Home / Civil Engineering / Theory of Structures :: Section 2

Civil Engineering :: Theory of Structures

  1. By applying the static equations i.e. Î£H = 0, ΣV = 0 and ΣM = 0, to a determinate structure, we may determine

  2. A.

    supporting reactions only

    B.

    shear forces only

    C.

    bending moments only

    D.

    internal forces only

    E.

    all the above.


  3. The general expression for the B.M. of a beam of length l is the beam carries  

  4. A.

    a uniformly distributed load w/unit length

    B.

    a load varying linearly from zero at one end to w at the other end

    C.

    an isolated load at mid span

    D.

    none of these.


  5. The ratio of the length and diameter of a simply supported uniform circular beam which experiences maximum bending stress equal to tensile stress due to same load at its mid span, is

  6. A.

    \(\frac { 1 } { 8 } \)

    B.

    \(\frac { 1 } { 4} \)

    C.

    \(\frac { 1 } { 2 } \)

    D.

    \(\frac { 1 } { 3 } \)

    E.

    1.0


  7. If a solid shaft (diameter 20 cm, length 400 cm, N = 0.8 x 105 N/mm2) when subjected to a twisting moment, produces maximum shear stress of 50 N/mm2, the angle of twist in radians, is

  8. A.

    0.001

    B.

    0.002

    C.

    0.0025

    D.

    0.003

    E.
    0.005

  9. The maximum B.M. due to an isolated load in a three hinged parabolic arch, (span l, rise h) having one of its hinges at the crown, occurs on either side of the crown at a distance

  10. A.

    \( \frac { 1 } {4 } \)

    B.

    \( \frac { h } {4 } \)

    C.

    \(\frac { I} { 2\sqrt{3} }\)

    D.

    \(\frac { I} { 3\sqrt{2} }\)


  11. The vertical reaction for the arch is

  12. A.

    \( \frac { wa } { 2 I} \)

    B.

    \( \frac { wI } { a} \)

    C.

    \( \frac { wa} { I} \)

    D.

    \( \frac { wa^2} { 2I} \)


  13. A bar of square section of area a2 is held such that its one of its diameters is vertical. The maximum shear stress will develop at a depth h where h is

  14. A.

    \(\frac { 2\sqrt{3} } { 4 }\)

    B.

    \(\frac { 3\sqrt{2} } { 4 }\)

    C.

    \( \frac { 2} { \sqrt{3}} \)

    D.

    \( \frac { \sqrt{3} } { 4 } \)


  15. The equivalent length of a column of length L, having both the ends hinged, is

  16. A.

    2L

    B.

    L

    C.

    \( \frac { L } { 2 } \)

    D.

    \( \frac { L } { \sqrt2 } \)


  17. A steel rod of sectional area 250 sq. mm connects two parallel walls 5 m apart. The nuts at the ends were tightened when the rod was heated to 100°C. If αsteel = 0.000012/C°, Esteel = 0.2 MN/mm2, the tensile force developed at a temperature of 50°C, is

  18. A.

    80 N/mm2

    B.

    100 N/mm2

    C.

    120 N/mm2

    D.

    150 N/mm2


  19.  

    The ratio of circumferential stress to the longitudinal stress in the walls of a cylindrical shell, due to flowing liquid, is

  20. A.

    \( \frac { 1 } { 2 } \)

    B.

    1

    C.

    1\( \frac { 1 } { 2 } \)

    D.

    2