Home / Arithmetic Aptitude / Logarithm :: General questions

### Arithmetic Aptitude :: Logarithm

1.  Which of the following statements is not correct?
2. A.

log10 10 = 1

B.

log (2 + 3) = log (2 x 3)

C.

log10 1 = 0

D.
 log (1 + 2 + 3) = log 1 + log 2 + log 3

3.  If log 2 = 0.3010 and log 3 = 0.4771, the value of log5 512 is:
4.  A. 2.870 B. 2.967 C. 3.876 D. 3.912

5. $$\frac { log\sqrt{8} } { log8 }$$is equal to:

6.  A. $$\frac { 1 } { \sqrt{8} }$$ B. $$\frac { 1 } { 4 }$$ C. $$\frac { 1 } {4 }$$ D. $$\frac { 1 } { 8}$$

7. If log 27 = 1.431, then the value of log 9 is:

8.  A. 0.934 B. 0.945 C. 0.954 D. 0.958

9. If log$$\frac {a} {b }$$+log$$\frac {b} {a }$$=log (a + b), then

10.  A. a + b = 1 B. a - b = 1 C. a = b D. a2 - b2 = 1

11. If log10 7 = a, then log10$$[ \frac { 1 } { 70 }]$$is equal to:

12.  A. - (1 + a) B. (1 + a)-1 C. $$\frac { a } { 10 }$$ D. $$\frac { 1 } { 10a }$$

13.  If log10 2 = 0.3010, then log2 10 is equal to:
14.  A. $$\frac { 699 } { 301 }$$ B. $$\frac { 1000 } { 301 }$$ C. 0.3010 D. 0.6990

15.  If log10 2 = 0.3010, the value of log10 80 is:
16.  A. 1.6020 B. 1.9030 C. 3.9030 D. None of these

17.  If log10 5 + log10 (5x + 1) = log10 (x + 5) + 1, then x is equal to:
18.  A. 1 B. 3 C. 5 D. 10

19. The value of$$[\frac { 1 } { log^360 }+€‹€‹$$$$[\frac { 1 } { log^460 }+€‹€‹$$$$[\frac { 1 } { log^560 }]$$is

20.  A. 0 B. 1 C. 5 D. 60

21.  If log 2 = 0.30103, the number of digits in 264 is:
22.  A. 18 B. 19 C. 20 D. 21

23. If logx$$[\frac { 9 } {16 } ]=$$$$-[\frac { 1 } {2 } ],$$then x is equal to:

24.  A. $$-\frac { 3} {4 }$$ B. $$\frac { 3} {4 }$$ C. $$\frac {8 1 } { 256 }$$ D. $$\frac {256 } { 81}$$

25.  If ax = by, then:
26.  A. log$$\frac {a } {b }$$=$$\frac {X } {Y }$$ B. $$\frac { loga } { logb }$$=$$\frac {X } {Y }$$ C. $$\frac { loga } { logb }$$=$$\frac {Y } {X }$$ D. None of these

27.  If logx y = 100 and log2 x = 10, then the value of y is:
28.  A. 210 B. 2100 C. 21000 D. 210000

29. The value of log2 16 is:

30.  A. $$\frac { 1 } { 8 }$$ B. 4 C. 8 D. 16