Home / Civil Engineering / Theory of Structures :: Section 3

Civil Engineering :: Theory of Structures

  1.  

    The equivalent length is of a column of length L having both the ends fixed, is

  2. A.

    2L

    B.

    L

    C.

    \( \frac { L} { 2 } \)

    D.

    \( \frac { L} { \sqrt{2} } \)


  3. The moment of inertia of a rectangular section of width B and depth D about an axis passing through C.G. and parallel to its width is

  4. A.

    \( \frac { BD^2 } { 6}\)

    B.

    \( \frac { BD^3 } { 6}\)

    C.

    \( \frac { BD^3 } { 12}\)

    D.

    \( \frac { B^2D} { 6}\)

    E.

    \( \frac { DB^2} { 12}\)


  5. A masonry dam (density = 20, 000 N/m3) 6 m high, one metre wide at the top and 4 m wide at the base, has vertical water face. The minimum stress at the base of the dam when the reservoir is full, will be

  6. A.

    75 N/m2

    B.

    750 N/m2

    C.

    7500 N/m2

    D.

    75000 N/m2


  7. The ratio of tangential and normal components of a stress on an inclined plane through θ° to the direction of the force, is :

  8. A.

    sin θ

    B.

    cos θ

    C.

    tan θ

    D.

    cos θ

    E.

    sec θ


  9. For calculating the allowable stress of long columns 

     \( \sigma0\) = \(\frac {\sigma y} { n } \) [ 1-a[\( \frac { 1 } { r } ] ^2\) ] is the empirical formula, known as

  10. A.

    Straight line formula

    B.

    Parabolic formula

    C.
    Perry's formula
    D.

    Rankine's formula.


  11.  

    A steel plate d x b is sandwiched rigidly between two timber joists each D x B/2 in section. The moment of resistance of the beam for the same maximum permissible stress σ in timber and steel will be (where Young's modulus of steel is m times that of the timber).

  12. A.

    σ [ \( \frac { BD^2+md^2 } { 6D } \)]

    B.

    σ [\( \frac { BD^3+md^3} { 6D } \)]

    C.

    σ [\( \frac { BD^2+mbd^3} { 4D } \)]

    D.

    σ [ \( \frac { BD^2+mbd^2} { 4D } \)]


  13. The ratio of crippling loads of a column having both the ends fixed to the column having both the ends hinged, is

  14. A.

    1

    B.

    2

    C.

    3

    D.

    4


  15.  

    Maximum strain theory for the failure of a material at the elastic limit, is known as

  16. A.

    Guest's or Trecas' theory

    B.

    St. Venant's theory

    C.

    Rankine's theory

    D.

    Haig's theory

    E.

    Von Mises's theory.


  17. A cantilever of length L is subjected to a bending moment M at its free end. If EI is the flexural rigidity of the section, the deflection of the free end, is

  18. A.

    \(\frac { ML } { EI } \)

    B.

    \(\frac { ML } { 2EI } \)

    C.

    \(\frac { ML^2 } { 2EI } \)

    D.

    \(\frac { ML^2 } { 3EI } \)


  19. The maximum bending moment for a simply supported beam with a uniformly distributed load w/unit length, is

  20. A.

    \(\frac { WI } { 2 } \)

    B.

    \(\frac { WI^2 } {4 }\)

    C.

    \(\frac { WI^2 } {8 }\)

    D.

    \(\frac { WI^2 } {4 }\)