Home / Arithmetic Aptitude / Trigonometry :: Section-1

Arithmetic Aptitude :: Trigonometry

  1.  For Cosine Rule of any triangle ABC, b² is equal to

  2. A.

    a² - c² 4bc cos A

    B.

    a² + c² - 2ac cos B

    C.

    a² - c² + 2ab cos A

    D.

    a³ + c³ - 3ab cos A


  3.  For Cosine Rule of any triangle ABC, c² is equal to

  4. A.

    a² - b² + 2ab sin A

    B.

    a² + b² + 2ab cos A

    C.

    a² + b² - 2ab cos C

    D.

    c² + a² + 2ac cos C


  5.  In a triangle ABC, if angle A = 72° , angle B = 48° and c = 9 cm then Ĉ is

  6. A.

    60°

    B.

    63°

    C.

    66°

    D.

    69°


  7.  Considering Cosine Rule of any triangle ABC, possible measures of angle A includes

  8. A.

    angle A is acute

    B.

    angle A is obtuse

    C.

    angle A is right-angle

    D.

    all of above


  9.  Sine rule for a triangle states that

  10. A.

    a/sin A = b/sin B = c/sin C

    B.

    sin A/a = sin B/b = sin C/c

    C.

    a/sin A + b/sin B + c/sin C

    D.

    2a/sin A = 2b/sin B = 2c/sin C


  11.  Dimensions of plane includes

  12. A.

    length only

    B.

    breadth only

    C.

    depth and length

    D.

    breadth and length


  13.  By expressing sin 170° in terms of trigonometrical ratios, answer will be

  14. A.

    sin 10° = 0.1631

    B.

    sin 10° = 0.1736

    C.

    sin 10° = 0.3761

    D.

    sin 10° = 1.7362


  15.  By expressing sin 125° in terms of trigonometrical ratios, answer will be

  16. A.

    sin 55° = 0.8192

    B.

    sin 65° = 0.9128

    C.

    sin 70° = 0.5384

    D.

    sin 72° = 0.1982


  17.  By expressing cos 113° in terms of trigonometrical ratios, answer will be

  18. A.

    − cos 62° = -0.8520

    B.

    − cos 65° = -0.4258

    C.

    − cos 67° = -0.3907

    D.

    − cos 76° = -0.7093


  19.  For Cosine Rule of any triangle ABC, a² is equal to

  20. A.

    b² + a² - 2ac cos A

    B.

    b² + c² - 2bc cos A

    C.

    b² - c² + 3bc cos C

    D.

    b³ + c³ - 2bc cos B