Discussion :: Hydraulics and Fluid Mechanics
-
A hemispherical tank of radius (R) containing liquid upto height (H1) has an orifice of cross-sectional area (a) at its bottom. The time required to lower the level of liquid from (H1) to (H2) will be
A.
\(\frac { n } { C_d \times a\sqrt{2g} } [\frac {2}{3} R(H_1^\frac{3}{2} - H_2^\frac{3}{2}) - \frac{1}{5}(H_1^\frac{5}{2} - H_2^\frac{5}{2})]\) |
B.
\(\frac { 2n } { C_d \times a\sqrt{2g} } [\frac {2}{3} R(H_2^\frac{3}{2} - H_1^\frac{3}{2}) - \frac{1}{5}(H_2^\frac{5}{2} - H_1^\frac{5}{2})]\) |
C.
\(\frac { 2n } { C_d \times a\sqrt{2g} } [\frac {2}{3} R^2(H_1^\frac{3}{2} - H_2^\frac{3}{2}) - \frac{1}{5}(H_1^\frac{5}{2} - H_2^\frac{5}{2})]\) |
D.
none of the above |
Answer : Option C
Explanation :
No answer description available for this question.
Be The First To Comment