Home / Mechanical Engineering / Hydraulics and Fluid Mechanics :: Discussion

Discussion :: Hydraulics and Fluid Mechanics

  1. A hemispherical tank of radius (R) containing liquid upto height (H1) has an orifice of cross-sectional area (a) at its bottom. The time required to lower the level of liquid from (H1) to (H2) will be

  2. A.

    \(\frac { n } { C_d \times a\sqrt{2g} } [\frac {2}{3} R(H_1^\frac{3}{2} - H_2^\frac{3}{2}) - \frac{1}{5}(H_1^\frac{5}{2} - H_2^\frac{5}{2})]\)

    B.

    \(\frac { 2n } { C_d \times a\sqrt{2g} } [\frac {2}{3} R(H_2^\frac{3}{2} - H_1^\frac{3}{2}) - \frac{1}{5}(H_2^\frac{5}{2} - H_1^\frac{5}{2})]\)

    C.

    \(\frac { 2n } { C_d \times a\sqrt{2g} } [\frac {2}{3} R^2(H_1^\frac{3}{2} - H_2^\frac{3}{2}) - \frac{1}{5}(H_1^\frac{5}{2} - H_2^\frac{5}{2})]\)

    D.

    none of the above

    View Answer

    Workspace

    Answer : Option C

    Explanation :

    No answer description available for this question.


Be The First To Comment