Home / GATE 2017-2018 / GATE Physics :: Practice Test Paper 1

GATE 2017-2018 :: GATE Physics

  1. The degenerate eigenvalue of the matrix
     is (your answer should be an integer) _________________
  2. A.
    1
    B.
    3
    C.
    5
    D.
    7

  3. Consider the decay of a pion into a muon and an anti-neutrino Ï€- → μ- + v-μ in the pion rest frame. 
    mÏ€ = 139.6 MeV/c2, mμ = 105.7 MeV/c2, mv ≈ 0 
    The energy (in MeV) of the emitted neutrino, to the nearest integer is ____________
  4. A.
    10
    B.
    30
    C.
    80
    D.
    120

  5. In a constant magnetic field of 0.6 Tesla along the z direction, find the value of the path integral  in the units of (Tesla m2) on a square loop of side length (1/ √2 ) meters. The normal to the loop makes an angle of 60° to the z-axis, as shown in the figure. The answer should be up to two decimal places. ____________

  6. A.
    0.15
    B.
    0.25
    C.
    0.40
    D.
    0.55

  7. A spin-half particle is in a linear superposition 0.8|↑〉 + 0.6|↓〉 of its spin-up and spin-down states. If |↑〉 and |↓〉 are the eigenstates of σz then what is the expectation value, up to one decimal place, of the operator 10σz + 5σx ? Here, symbols have their usual meanings. ____________
  8. A.
    4.3
    B.
    5.4
    C.
    6.5
    D.
    7.6

  9. Consider the wave function Aeikr (r0/r) where 􀜣 is the normalization constant. For r = 2r0, the magnitude of probability current density up to two decimal places, in units of (A2ћk/m), is
  10. A.
    0.20
    B.
    0.25
    C.
    0.30
    D.
    0.35

  11. An n-channel junction field effect transistor has 5mA source to drain current at shorted gate (IDSS) and 5V pinch off voltage (VP). Calculate the drain current in mA for a gate-source voltage (VGS) of -2.5V. The answer should be up to two decimal places. ________________
  12. A.
    1.25
    B.
    1.75
    C.
    1.55
    D.
    1.35

  13. There are four energy levels E, 2E, 3E and 4E (where E >0). The canonical partition function of two particles is , if these particles are 
    two identical fermions
  14. A.
    e-2 β E + e-4 β E + e-6 β E + e-8 β E
    B.
    e-3 β E + e-4 β E + e-5 β E + e-6 β E + e-7 β E
    C.
    (e-β E + e-2 β E + e-3 β E)2
    D.
    e-2 β E - e-4 β E + e-6 β E - e-8 β E

  15. There are four energy levels E, 2E, 3E and 4E (where E >0). The canonical partition function of two particles is , if these particles are 
    two distinguishable particles
  16. A.
    e-2 β E + e-4 β E + e-6 β E + e-8 β E
    B.
    e-3 β E + e-4 β E + e-5 β E + e-6 β E + e-7 β E
    C.
    (e-β E + e-2 β E + e-3 β E)2
    D.
    e-2 β E - e-4 β E + e-6 β E - e-8 β E

  17. To the given unperturbed Hamiltonian

    we add a small perturbation given by

    where ϵ is a small quantity. 
    The ground state eigenvector of the unperturbed Hamiltonian is
  18. A.
    (1/√2, 1/√2, 0)
    B.
    (1/√2, -1/√2, 0)
    C.
    (0, 0, 1)
    D.
    (1, 0, 0)

  19. To the given unperturbed Hamiltonian

    we add a small perturbation given by

    where ϵ is a small quantity. 
    A pair of eigenvalues of the perturbed Hamiltonian, using first order perturbation theory, is
  20. A.
    3+2ϵ, 7+2ϵ
    B.
    3+2ϵ, 2+ϵ
    C.
    3, 7+2ϵ
    D.
    3, 2+2ϵ