Home / eLitmus Sample Papers with Answers / eLitmus Aptitude Test Paper :: eLitmus Aptitude

eLitmus Sample Papers with Answers :: eLitmus Aptitude Test Paper

  1. The area bounded by the curves y = |x| - 1 and y = - |x| + 1 is
  2. A.
    1
    B.
    2
    C.
    2 v2
    D.
    4

  3. The coordinates of foot of the perpendicular drawn from the point (2, 4) on the line x + y = 1 are
  4. A.
    (1 / 2 , 3 / 2)
    B.
    (-1 / 2 , 3 / 2)
    C.
    (3 / 2 , -1 / 2)
    D.
    (-1 / 2 , -3 / 2)

  5. Three lines 3x + 4y + 6 = 0, 2x 3y 2 2 0 + + = and 4x 7y 8 0 + + = are
  6. A.
    Parallel
    B.
    Sides of a triangles
    C.
    Concurrent
    D.
    None of these

  7. Angle between the pair of straight lines x2 “ xy “ 6y2 “ 2x + 11y “ 3 = 0 is
  8. A.
    450 , 1350
    B.
    tan-1 2, p = tan-1 2
    C.
    tan-1 3, p = tan-1 3
    D.
    None of these

  9. If a circle passes through the point (a, b) and cuts the circle x2 + y2 = 4 orthogonally, then locus of its centre is
  10. A.
    2ax + 2by + (a2 + b2 + 4) = 0
    B.
    2ax + 2by - (a2 + b2 + 4) = 0
    C.
    2ax - 2by + (a2 + b2 + 4) = 0
    D.
    2ax - 2by - (a2 + b2 + 4) = 0

  11. Centre of circle whose normals are x2 - 2xy - 3x + 6y = 0 is
  12. A.
    (3 , 3 / 2)
    B.
    (3 / 2 , 3)
    C.
    (-3 , 3 / 2)
    D.
    (-3 , -3 / 2)

  13. Centre of a circle is (2, 3). If the line x + y = 1 touches, its equation is
  14. A.
    x2 + y2 - 4x - 6y + 4 = 0
    B.
    x2 + y2 - 4x - 6y + 5 = 0
    C.
    x2 + y2 - 4x - 6y - 5 = 0
    D.
    None of these

  15. The centre of a circle passing through the points (0, 0), (1, 0) and touching the circle x2 + y2 = 9 is
  16. A.
    (3 / 2 , 1 / 2)
    B.
    (1 / 2 , 3 / 2)
    C.
    (1 / 2 , 1 / 2)
    D.
    (1 / 2 , -2½)

  17. The line y = mx + 1 is a tangent to the parabola y2 = 4x if
  18. A.
    m = 1
    B.
    m = 2
    C.
    m = 3
    D.
    m = 4

  19. The angle between the tangents drawn from the origin to the parabola y2 = 4a (x “ a) is
  20. A.
    900
    B.
    300
    C.
    tan-1(½)
    D.
    450