Discussion :: Surds and Indices
-
\( \frac { (243)^n/5*362n+1} { 9^n*3^n-1 }=?\)
Answer : Option C
Explanation :
Given Expression=\( \frac { (243)^n/5*362n+1} { 9^n*3^n-1 }\)
=\( \frac {(3)^((n/5)*3^2n+1} { (3^2)^n*3^n-1} \)
=\( \frac {(3)^((n/5)*3^2n+1} { (3^2n*3^n-1)} \)
=\( \frac { 3^n*3^2n+1} {3^2n *3^n-1}\)
=\(\frac { 3(n+2n+1} {3(2n+n-1 }\)
=\(\frac {3^3n+1} { 3^3n-1 } \)
|
Be The First To Comment