Home / Civil Engineering / Applied Mechanics :: Section 3

Civil Engineering :: Applied Mechanics

  1. Time of flight of a projectile on a horizontal plane, is

  2. A.

    \(\frac { 2u sina } { g }\)

    B.

    \(\frac { 2u cosa } { g }\)

    C.

    \(\frac { 2u \text{tan a} } { g }\)

    D.

    \(\frac { 2u \text{tcot a} } { g }\)


  3. The reaction RB of the roller support B of the beam shown in below figure is

  4. A.

    10.8 t

    B.

    10.6 t

    C.

    10.4 t

    D.

    10.2 t.


  5. The acceleration of a train starting from rest at any instant is  \( \frac { 1 } { 6(V+1) } m/sec^2\) where V is the velocity of the train in m/sec. The train will attain a velocity of 36 km/hour after travelling a distance of

  6. A.

    2000 m

    B.

    2100 m

    C.

    2200 m

    D.

    2300 m

    E.

    2500 m.


  7. The maximum frictional force which comes into play, when a body just begins to slide over the surface of a an other body, is known

  8. A.

    sliding friction

    B.

    rolling friction

    C.

    limiting friction

    D.
    none of these.

  9. If G is the Gauge of track, v is velocity of the moving vehicle, g is the acceleration due to gravity and r is the radius of a circular path, the required superelevation is

  10. A.

    \(\frac { gV^2 } { Gr }\)

    B.

    \(\frac { Gr^2 } { gr }\)

    C.

    \(\frac { Gr^2 } { gV^2 }\)

    D.

    \(\frac { GV^2 } { gV } \)


  11.  

    If two forces of 3 kg and 4 kg act at right angles to each other, their resultant force will be equal to

  12. A.

    7 kg

    B.

    1 kg

    C.

    5 kg

    D.

    1/7 kg

    E.

    none of these.


  13. The c.g. of the shaded area of the below figure from the x-axis is

  14. A.

    \(\frac { a} { 4}\)

    B.

    \(\frac { 3a } { 4 } \)

    C.

    \(\frac { 3b } { 10 } \)

    D.

    \(\frac { 3a } { 10 } \)

    E.

    \(\frac { 3a } { 5} \)


  15. If v and Ï‚¬° are linear and angular velocities, the centripetal acceleration of a moving body along the circular path of radius r, will be

  16. A.

    \(\frac { r } { V^2 }\)

    B.

    \(\frac { V^2 } { r }\)

    C.

    \(\frac {r} { w^2 } \)

    D.

    \(\frac { w^2 } { r } \)

    E.

    \(rw\)


  17. Two shots fired simultaneously from the top and bottom of a vertical tower with elevations of 30° and 45° respectively strike a target simultaneously. If horizontal distance of the target from the tower is 1000 m, the height of the tower is

  18. A.

    350 m

    B.

    375 m

    C.

    400 m

    D.

    425 m.


  19. For the given values of initial velocity of projection and angle of inclination of the plane, the maximum range for a projectile projected upwards will be obtained, if the angle of projection is

  20. A.

    a = \(\frac { n } { 4 } \)\(\frac { \beta } { 2 } \)

    B.

    a = \(\frac { n } { 2 } \) +\(\frac { \beta } { 2 } \)

    C.

    a = \(\frac { \beta } { 2 } \) - \(\frac { n } { 2 } \)

    D.

    a = \(\frac { n } { 4 } \)\(\frac { \beta } { 4} \)

    E.

    a = \(\frac { n } { 2 } \)\(\frac { \beta } { 2 } \)